Automatic segmentation and components classification of optic pathway gliomas in MRI

16Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present a new method for the automatic segmentation and components classification of brain Optic Pathway Gliomas (OPGs) from multi-spectral MRI datasets. Our method accurately identifies the sharp OPG boundaries and consistently delineates the missing contours by effectively incorporating prior location, shape, and intensity information. It then classifies the segmented OPG volume into its three main components - solid, enhancing, and cyst - with a probabilistic tumor tissue model generated from training datasets that accounts for the datasets grey-level differences. Experimental results on 25 datasets yield a mean OPG boundary surface distance error of 0.73mm and mean volume overlap difference of 30.6% as compared to manual segmentation by an expert radiologist. A follow-up patient study shows high correlation between the clinical tumor progression evaluation and the component classification results. To the best of our knowledge, ours is the first method for automatic OPG segmentation and component classification that may support quantitative disease progression and treatment efficacy evaluation. © 2010 Springer-Verlag.

Cite

CITATION STYLE

APA

Weizman, L., Ben-Sira, L., Joskowicz, L., Precel, R., Constantini, S., & Ben-Bashat, D. (2010). Automatic segmentation and components classification of optic pathway gliomas in MRI. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6361 LNCS, pp. 103–110). https://doi.org/10.1007/978-3-642-15705-9_13

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free