Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring

10Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

We describe a sensitive plant monitoring system by the detection of the bioelectric potentials in plants with boron-doped diamond (BDD) electrodes. For sensor electrodes, we used commercially available BDD, Ag, and Pt plate electrodes. We tested this approach on a hybrid species in the genus Opuntia (potted) and three different trees (ground-planted) at different places in Japan. For the Opuntia, we artificially induced bioelectric potential changes by the surface potential using the fingers. We detected substantial changes in bioelectric potentials through all electrodes during finger touches on the surface of potted Opuntia hybrid plants, although the BDD electrodes were several times more sensitive to bioelectric potential change compared to the other electrodes. Similarly for ground-planted trees, we found that both BDD and Pt electrodes detected bioelectric potential change induced by changing environmental factors (temperature and humidity) for months without replacing/removing/changing electrodes, BDD electrodes were 5–10 times more sensitive in this detection than Pt electrodes. Given these results, we conclude that BDD electrodes on live plant tissue were able to consistently detect bioelectrical potential changes in plants.

Cite

CITATION STYLE

APA

Ochiai, T., Tago, S., Hayashi, M., & Fujishima, A. (2015). Highly sensitive measurement of bio-electric potentials by boron-doped diamond (BDD) electrodes for plant monitoring. Sensors (Switzerland), 15(10), 26921–26928. https://doi.org/10.3390/s151026921

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free