Quantitative estimation of the magnitude and variability of gross primary productivity (GPP) is required to study the carbon cycle of the terrestrial ecosystem. Using ecosystem models and remotely-sensed data is a practical method for accurately estimating GPP. This study presents a method for assimilating high-quality leaf area index (LAI) products retrieved from satellite data into a process-oriented Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM) to acquire accurate GPP. The assimilation methods, including the Ensemble Kalman Filter (EnKF) and a proper orthogonal decomposition (POD)-based ensemble four-dimensional (4D) variational assimilation method (PODEn4DVar), incorporate information provided by observations into the model to achieve a better agreement between the model-estimated and observed GPP. The LPJ-POD scheme performs better with a correlation coefficient of r = 0.923 and RMSD of 32.676 gC/m2/month compared with the LPJ-EnKF scheme (r = 0.887, RMSD = 38.531 gC/m2/month) and with no data assimilation (r = 0.840, RMSD = 45.410 gC/m2/month). Applying the PODEn4DVar method into LPJ-DGVM for simulating GPP in China shows that the annual amount of GPP in China varied between 5.92 PgC and 6.67 PgC during 2003-2012 with an annual mean of 6.35 PgC/yr. This study demonstrates that integrating remotely-sensed data with dynamic global vegetation models through data assimilation methods has potential in optimizing the simulation and that the LPJ-POD scheme shows better performance in improving GPP estimates, which can provide a favorable way for accurately estimating dynamics of ecosystems.
CITATION STYLE
Ma, R., Zhang, L., Tian, X., Zhang, J., Yuan, W., Zheng, Y., … Kato, T. (2017). Assimilation of remotely-sensed leaf area index into a dynamic vegetation model for gross primary productivity estimation. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030188
Mendeley helps you to discover research relevant for your work.