I understand what you are saying: Leveraging deep learning techniques for aspect based sentiment analysis

8Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

Despite widespread use of online reviews in consumer purchase decision making, the potential value of online reviews in facilitating digital collaboration among product/service providers, consumers, and online retailers remains under explored. One of the significant barriers to realizing the above potential lies in the difficulty of understanding online reviews due to their sheer volume and free-text form. To promote digital collaborations, we investigate aspect based sentiment dynamics of online reviews by proposing a semi-supervised, deep learning facilitated analytical pipeline. This method leverages deep learning techniques for text representation and classification. Additionally, building on previous studies that address aspect extraction and sentiment identification in isolation, we address both aspects and sentiments analyses simultaneously. Further, this study presents a novel perspective to understanding the dynamics of aspect based sentiments by analyzing aspect based sentiment in time series. The findings of this study have significant implications with regards to digital collaborations among consumers, product/service providers and other stakeholders of online reviews.

Cite

CITATION STYLE

APA

Tao, J., Zhou, L., & Feeney, C. (2019). I understand what you are saying: Leveraging deep learning techniques for aspect based sentiment analysis. In Proceedings of the Annual Hawaii International Conference on System Sciences (Vol. 2019-January, pp. 470–479). IEEE Computer Society. https://doi.org/10.24251/hicss.2019.057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free