Background: A proposed computer aided detection (CAD) scheme faces major issues during subtle nodule recognition. However, radiologists have not noticed subtle nodules in beginning stage of lung cancer while a proposed CAD scheme recognizes non subtle nodules using x-ray images. Method: Such an issue has been resolved by creating MANN (Massive Artificial Neural Network) based soft tissue technique from the lung segmented x-ray image. A soft tissue image recognizes nodule candidate for feature extortion and classification. X-ray images are downloaded using Japanese society of radiological technology (JSRT) image set. This image set includes 233 images (140 nodule x-ray images and 93 normal x-ray images). A mean size for a nodule is 17.8 mm and it is validated with computed tomography (CT) image. Thirty percent (42/140) abnormal represents subtle nodules and it is split into five stages (tremendously subtle, very subtle, subtle, observable, relatively observable) by radiologists. Result: A proposed CAD scheme without soft tissue technique attained 66.42% (93/140) sensitivity and 66.76% accuracy having 2.5 false positives per image. Utilizing soft tissue technique, many nodules superimposed by ribs as well as clavicles have identified (sensitivity is 72.85% (102/140) and accuracy is 72.96% at one false positive rate). Conclusion: In particular, a proposed CAD system determine sensitivity and accuracy in support of subtle nodules (sensitivity is 14/42 = 33.33% and accuracy is 33.66%) is statistically higher than CAD (sensitivity is 13/42 = 30.95% and accuracy is 30.97%) scheme without soft tissue technique. A proposed CAD scheme attained tremendously minimum false positive rate and it is a promising technique in support of cancerous recognition due to improved sensitivity and specificity.
CITATION STYLE
Rajagopalan, K., & Babu, S. (2020). The detection of lung cancer using massive artificial neural network based on soft tissue technique. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01220-z
Mendeley helps you to discover research relevant for your work.