Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy

67Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The transfer of mitochondria between cells has recently been revealed as a spontaneous way to protect the injured cells. However, the utilization of this natural transfer process for disease treatment is so far limited by its unsatisfactory transfer efficiency and selectivity. Here, we demonstrate that iron oxide nanoparticles (IONPs) can augment the intercellular mitochondrial transfer from human mesenchymal stem cells (hMSCs) selectively to diseased cells, owing to the enhanced formation of connexin 43-containing gap junctional channels triggered by ionized IONPs. In a mouse model of pulmonary fibrosis, the IONP-engineered hMSCs achieve a remarkable mitigation of fibrotic progression because of the promoted intercellular mitochondrial transfer, with no serious safety issues identified. The present study reports a potential method of using IONPs to enable hMSCs for efficient and safe transfer of mitochondria to diseased cells to restore mitochondrial bioenergetics.

Cite

CITATION STYLE

APA

Huang, T., Zhang, T., Jiang, X., Li, A., Su, Y., Bian, Q., … Gao, J. (2021). Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Science Advances, 7(40). https://doi.org/10.1126/sciadv.abj0534

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free