Automated patch-clamp methods for the hERG cardiac potassium channel

11Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The human Ether-a-go-go Related Gene (hERG) product has been identified as a central ion channel underlying both familial forms of elongated QT interval on the electrocardiogram and drug-induced elongation of the same QT segment. Indeed, reduced function of this potassium channel involved in the repolarization of the cardiac action potential can produce a type of life-threatening cardiac ventricular arrhythmias called Torsades de Pointes (TdP). Therefore, hERG inhibitory activity of newly synthetized molecules is a relevant structure-activity metric for compound prioritization and optimization in medicinal chemistry phases of drug discovery. Electrophysiology remains the gold standard for the functional assessment of ion channel pharmacology. The recent years have witnessed automatization and parallelization of the manual patch-clamp technique, allowing higher throughput screening on recombinant hERG channels. However, the multi-well plate format of automatized patch-clamp does not allow visual detection of potential micro-precipitation of poorly soluble compounds. In this chapter we describe bench procedures for the culture and preparation of hERG-expressing CHO cells for recording on an automated patch-clamp workstation. We also show that the sensitivity of the assay can be improved by adding a surfactant to the extracellular medium.

Cite

CITATION STYLE

APA

Houtmann, S., Schombert, B., Sanson, C., Partiseti, M., & Bohme, G. A. (2017). Automated patch-clamp methods for the hERG cardiac potassium channel. In Methods in Molecular Biology (Vol. 1641, pp. 187–199). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7172-5_10

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free