Tissue-specific split sfGFP system for streamlined expression of GFP tagged proteins in the caenorhabditis elegans germline

11Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Identifying protein localization is a useful tool in analyzing protein function. Using GFP-fusion tags, researchers can study the function of endogenous proteins in living tissue. However, these tags are considerably large, making them difficult to insert, and they can potentially affect the normal function of these proteins. To improve on these drawbacks, we have adopted the split sfGFP system for studying the localization of proteins in the Caenorhabditis elegans germline. This system divides the “super folder” GFP into 2 fragments, allowing researchers to use CRISPR/Cas9 to tag proteins more easily with the smaller subunit, while constitutively expressing the larger subunit from another locus. These two parts are able to stably interact, producing a functional GFP when both fragments are in the same cellular compartment. Our data demonstrate that the split sfGFP system can be adapted for use in C. elegans to tag endogenous proteins with relative ease. Strains containing the tags are homozygous viable and fertile. These small subunit tags produce fluorescent signals that matched the localization patterns of the wild-type protein in the gonad. Thus, our study shows that this approach could be used for tissue-specific GFP expression from an endogenous locus.

Cite

CITATION STYLE

APA

Hefel, A., & Smolikove, S. (2019). Tissue-specific split sfGFP system for streamlined expression of GFP tagged proteins in the caenorhabditis elegans germline. G3: Genes, Genomes, Genetics, 9(6), 1933–1943. https://doi.org/10.1534/g3.119.400162

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free