Effect of gypsum addition on the mechanical and microstructural performance of sulphide‐rich cemented paste backfill

16Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The present study investigates the effect of β‐hemihydrate gypsum (HG) dosages on the mechanical and microstructural performance of cemented paste backfill (CPB) produced from sul-phide‐rich mine tailings using NaOH‐activated slag (NAS) as the major binder. X‐ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) analyses were carried out to elucidate the mineralogical composition and microstructure of NAS‐HG‐CPB samples. The results illustrate that the main hydration products of NAS‐HG‐CPB from sulphide-rich tailings are crystalline (CaSO4•2H2O and ettringite (AFt), 3CaO•Al2O3•3CaSO4•32H2O) and amorphous. The results also show that the 28 d unconfined compressive strength (UCS) of CPB with 30 wt. % HG replacing NAS increased by 52% compared to the UCS of CPB containing no HG, and both have stable long‐stage (180 d) UCS (i.e., no strength loss). Excess HG addition (≧50 wt. %) reduced the early‐stage (≦28 d) UCS of NAS‐HG‐CPB and led to unstable long‐stage (180 d) UCS by the formation of secondary gypsum. The use of 30 wt. % HG replacing NAS in NAS‐HG‐CPB accelerates the hydration process of ground granulated blast furnace slag (GGBS) in the alkaline solution by forming ettringite (AFt), leading to the denser microstructure and improved mechanical performance in comparison with CPB containing no HG. The NAS‐HG binder with low dosages of HG (≦30 wt. %) will be a promising binder for stabilising sulphide and non‐sulphide tailings and CPB production.

Cite

CITATION STYLE

APA

Tang, Y., Zheng, J., Guo, L., & Zhao, Y. (2021). Effect of gypsum addition on the mechanical and microstructural performance of sulphide‐rich cemented paste backfill. Minerals, 11(3), 1–14. https://doi.org/10.3390/min11030283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free