Three-Dimensional Modeling of the Optical Switch Based on Guided-Mode Resonances in Photonic Crystals

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Optical switching is an essential part of photonic integrated circuits and the focus of research at the moment. In this research, an optical switch design working on the phenomenon of guided-mode resonances in a 3D photonic-crystal-based structure is reported. The optical-switching mechanism is studied in a dielectric slab-waveguide-based structure operating in the near-infrared range in a telecom window of 1.55 µm. The mechanism is investigated via the interference of two signals, i.e., the data signal and the control signal. The data signal is coupled into the optical structure and filtered utilizing guided-mode resonance, whereas the control signal is index-guided in the optical structure. The amplification or de-amplification of the data signal is controlled by tuning the spectral properties of the optical sources and structural parameters of the device. The parameters are optimized first using a single-cell model with periodic boundary conditions and later in a finite 3D-FDTD model of the device. The numerical design is computed in an open-source Finite Difference Time Domain simulation platform. Optical amplification in the range of 13.75% is achieved in the data signal with a decrease in the linewidth up to 0.0079 µm, achieving a quality factor of 114.58. The proposed device presents great potential in the field of photonic integrated circuits, biomedical technology, and programmable photonics.

Cite

CITATION STYLE

APA

Rehman, A. U., Khan, Y., Irfan, M., Choudri, S., Khonina, S. N., Kazanskiy, N. L., & Butt, M. A. (2023). Three-Dimensional Modeling of the Optical Switch Based on Guided-Mode Resonances in Photonic Crystals. Micromachines, 14(6). https://doi.org/10.3390/mi14061116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free