In the era of Web 2.0, the data are growing immensely and is assisting E-commerce websites for better decision-making. Collaborative filtering, one of the prominent recommendation approaches, performs recommendation by finding similarity. However, this approach fails in managing large-scale datasets. To mitigate the same, an efficient map-reduce-based clustering recommendation system is presented. The proposed method uses a novel variant of the whale optimization algorithm, tournament selection empowered whale optimization algorithm, to attain the optimal clusters. The clustering efficiency of the proposed method is measured on four large-scale datasets in terms of F-measure and computation time. The experimental results are compared with state-of-the-art map-reduce-based clustering methods, namely map-reduce-based K-means, map-reduce-based bat algorithm, map-reduce-based Kmeans particle swarm optimization, map-reduce-based artificial bee colony, and map-reduce-based whale optimization algorithm. Furthermore, the proposed method is tested as a recommendation system on the publicly available movie-lens dataset. The performance validation is measured in terms of mean absolute error, precision and recall, over a different number of clusters. The experimental results assert that the proposed method is a permissive approach for the recommendation over large-scale datasets.
CITATION STYLE
Tripathi, A. K., Mittal, H., Saxena, P., & Gupta, S. (2021). A new recommendation system using map-reduce-based tournament empowered Whale optimization algorithm. Complex and Intelligent Systems, 7(1), 297–309. https://doi.org/10.1007/s40747-020-00200-0
Mendeley helps you to discover research relevant for your work.