Effects of cryptic mortality and the hidden costs of using length limits in fishery management

195Citations
Citations of this article
209Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Fishery collapses cause substantial economic and ecological harm, but common management actions often fail to prevent overfishing. Minimum length limits are perhaps the most common fishing regulation used in both commercial and recreational fisheries, but their conservation benefits can be influenced by discard mortality of fish caught and released below the legal length. We constructed a computer model to evaluate how discard mortality could influence the conservation utility of minimum length regulations. We evaluated policy performance across two disparate fish life-history types: short-lived high-productivity (SLHP) and long-lived low-productivity (LLLP) species. For the life-history types, fishing mortality rates and minimum length limits that we examined, length limits alone generally failed to achieve sustainability when discard mortality rate exceeded about 0.2 for SLHP species and 0.05 for LLLP species. At these levels of discard mortality, reductions in overall fishing mortality (e.g. lower fishing effort) were required to prevent recruitment overfishing if fishing mortality was high. Similarly, relatively low discard mortality rates (>0.05) rendered maximum yield unobtainable and caused a substantial shift in the shape of the yield response surfaces. An analysis of fishery efficiency showed that length limits caused the simulated fisheries to be much less efficient, potentially exposing the target species and ecosystem to increased negative effects of the fishing process. Our findings suggest that for overexploited fisheries with moderate-to-high discard mortality rates, reductions in fishing mortality will be required to meet management goals. Resource managers should carefully consider impacts of cryptic mortality sources (e.g. discard mortality) on fishery sustainability, especially in recreational fisheries where release rates are high and effort is increasing in many areas of the world. © 2007 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Coggins, L. G., Catalano, M. J., Allen, M. S., Pine, W. E., & Walters, C. J. (2007). Effects of cryptic mortality and the hidden costs of using length limits in fishery management. Fish and Fisheries, 8(3), 196–210. https://doi.org/10.1111/j.1467-2679.2007.00247.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free