There have been over seven million cases and almost 413 372 deaths globally due to the novel coronavirus (2019-nCoV) associated disease COVID-19, as of 11 June 2020. Phylogenetic analysis suggests that there is a common source for these infections. The overall sequence similarities between the spike protein of 2019-nCoV and that of SARS-CoV are known to be around 76% to 78% and 73% to 76% for the whole protein and receptor-binding domain (RBD), respectively. Thus, they have the potential to serve as the drug and/or vaccine candidate. However, the individual response against 2019-nCoV differs due to genetic variations in the human population. Understanding the variations in angiotensin-converting enzyme 2 (ACE2) and human leukocyte antigen (HLA) that may affect the severity of 2019-nCoV infection could help in identifying individuals at a higher risk from the COVID-19. A number of potential drugs/vaccines as well as antibody/cytokine-based therapeutics are in various developmental stages of preclinical/clinical trials against SARS-CoV, MERS-CoV, and 2019-nCoV with substantial cross-reactivity, and may be used against COVID-19. For diagnosis, the reverse-transcription polymerase chain reaction is the gold standard test for initial diagnosis of COVID-19. A kit based on serological tests are also recommended for investigating the spread of COVID-19 but this is challenging due to the antibodies cross-reactivity. This review comprehensively summarizes the recent reports available regarding the host-pathogen interaction, morphological and genomic structure of the virus, and the diagnostic techniques as well as the available potential therapeutics against COVID-19.
CITATION STYLE
Singh, S. P., Pritam, M., Pandey, B., & Yadav, T. P. (2021, January 1). Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. Journal of Medical Virology. John Wiley and Sons Inc. https://doi.org/10.1002/jmv.26254
Mendeley helps you to discover research relevant for your work.