To determine the reasonable rate of straw return and nitrogen (N) fertilizer use which may maintain soil ecosystem health, we analyzed their soil microbial biomass and composition in a 10-year field experiment with different rates of straw return (50%, 100%) and N fertilizer (270, 360, 450, 540 kg N ha−1 yr−1) by phospholipid fatty acid (PLFA) analysis and high-throughput sequencing. A rate of 50% straw return combined with 450 or 540 kg N ha−1 yr−1 effectively increased the soil available nutrient contents mainly for total nitrogen, available potassium, and available phosphorus. Total PLFAs indicated that straw return combined with N fertilizer promoted soil microbial growth and increased biomass. A rate of 100% straw return with 450 kg N ha−1 yr−1 was not conducive to the stability of the soil ecosystem according to the ratio of fungi to bacteria (F:B). The similar rate of straw returning and the similar level of nitrogen fertilizer application will be divided into the same cluster using a heatmap analysis. Some saprophytic fungi or pathogens became the dominant fungi genera, such as Gibberella, Sarocladium, Pseudallescheria, and Mycosphaerella, in the treatments with 100% straw returning combining higher N fertilizer (>450 kg ha−1 yr−1 yr−1 added). The relative abundances of some heavy metal-tolerant bacteria, such as those in Proteobacteria and Chlorobi, increased in the soils in the 100% straw return treatments. Therefore, the combined application of 100% straw returning and higher N fertilizer (>450 kg ha−1 yr−1) added long-term was not appropriate for soil health, which will lead to the risk of disease and pollution in soil.
CITATION STYLE
Yu, M., Wang, Q., Su, Y., Xi, H., Qiao, Y., Guo, Z., … Shen, A. (2023). Response of Soil Environment and Microbial Community Structure to Different Ratios of Long-Term Straw Return and Nitrogen Fertilizer in Wheat–Maize System. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031986
Mendeley helps you to discover research relevant for your work.