Catchment-scale storm velocity: quantification, scale dependence and effect on flood response

  • Nikolopoulos E
  • Borga M
  • Zoccatelli D
  • et al.
N/ACitations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The concept of "catchment-scale storm velocity" quantifies the rate of storm motion up and down the basin accounting for the interaction between the rainfall space-time variability and the structure of the drainage network. It provides an assessment of the impact of storm motion on flood shape. We evaluate the catchment-scale storm velocity for the 29 August 2003 extreme storm that occurred on the 700 km2-wide Fella River basin in the eastern Italian Alps. The storm was characterized by the high rate of motion of convective cells across the basin. Analysis is carried out for a set of basins that range in area from 8 to 623 km2to: (a) determine velocity magnitudes for different sub-basins; (b) examine the relationship of velocity with basin scale and (c) assess the impact of storm motion on simulated flood response. Two spatially distributed hydrological models of varying degree of complexity in the representation of the runoff generation processes are used to evaluate the effects of the storm velocity on flood modelling and investigate model dependencies of the results. It is shown that catchment-scale storm velocity has a non-linear dependence on basin scale and generally exhibits rather moderate values, in spite of the strong kinematic characteristics of individual storm elements. Consistently with these observations and for both models, hydrological simulations show that storm motion has an almost negligible effect on the flood response modelling. © 2014 IAHS Press.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Nikolopoulos, E. I., Borga, M., Zoccatelli, D., & Anagnostou, E. N. (2014). Catchment-scale storm velocity: quantification, scale dependence and effect on flood response. Hydrological Sciences Journal, 59(7), 1363–1376. https://doi.org/10.1080/02626667.2014.923889

Readers over time

‘14‘15‘16‘17‘18‘19‘21‘22‘23‘24‘2502468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 12

50%

Researcher 10

42%

Professor / Associate Prof. 2

8%

Readers' Discipline

Tooltip

Environmental Science 9

41%

Engineering 7

32%

Earth and Planetary Sciences 5

23%

Computer Science 1

5%

Save time finding and organizing research with Mendeley

Sign up for free
0