The immunophenotype of bladder cancer plays a pivotal role in the prognosis of cancer, but the effect of different epigenetic factors on different immunophenotypes in bladder tumours remains unclear. This study used multi-omics data analysis to provide molecular basis support for different immune phenotypes. Unsupervised cluster analysis revealed distinct subclusters with higher (subcluster B2) or lower cytotoxic immune phenotypes (subcluster A1) related to PD-L1 and IFNG expression. Mutational landscape analyses showed that the mutation level of TP53 in subcluster B1 was highest than other subclusters, and subcluster B1 had a lower frequency of concurrent mutation than subcluster A2. A total of 2364 differentially expressed genes were identified between subclusters A2 and B1, and the main functions of the up-regulated genes in subcluster B1 were enriched in the activation of T cells and other related pathways. We found that STAT1 was a key gene in a gene regulatory network related to immune phenotypes in bladder cancer. Finally, we constructed a prognostic prediction model by LASSO Cox regression which could distinguish high-risk and low-risk cases significantly. In conclusion, the present study addressed a field synopsis between genetic and epigenetic events in immune phenotypes of bladder cancer.
CITATION STYLE
Weng, H., Yuan, S., Huang, Q., Zeng, X. T., & Wang, X. H. (2021). STAT1 is a key gene in a gene regulatory network related to immune phenotypes in bladder cancer: An integrative analysis of multi-omics data. Journal of Cellular and Molecular Medicine, 25(7), 3258–3271. https://doi.org/10.1111/jcmm.16395
Mendeley helps you to discover research relevant for your work.