Analytic and clinical validity of thyroid nodule mutational profiling using droplet digital polymerase chain reaction

N/ACitations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Recent guidelines for the management of thyroid nodules incorporate mutation testing as an adjunct for surgical decision-making, however current tests are costly with limited accuracy. Droplet digital PCR (ddPCR) is an ultrasensitive method of nucleic acid detection that is particularly useful for identifying gene mutations. This study aimed to assess the analytic and clinical validity of RAS and BRAF ddPCR mutational testing as a diagnostic tool for thyroid fine needle aspirate biopsy (FNAB). Methods: Patients with thyroid nodules meeting indication for FNAB were prospectively enrolled from March 2015 to September 2017. In addition to clinical protocol, an additional FNAB was obtained for ddPCR. Optimized ddPCR probes were used to detect mutations including HRASG12 V, HRASQ61K, HRASQ61R, NRASQ61R, NRASQ61K and BRAFV600E. The diagnostic performance of BRAF and RAS mutations was assessed individually or in combination with Bethesda classification against final surgical pathology. Results: A total of 208 patients underwent FNAB and mutational testing with the following Bethesda cytologic classification: 26.9% non-diagnostic, 55.2% benign, 5.3% FLUS/AUS, 2.9% FN/SPN, 2.4% SFM and 7.2% malignant. Adequate RNA was obtained from 91.3% (190) FNABs from which mutations were identified in 21.1% of HRAS, 11.5% of NRAS and 7.4% of BRAF. Malignant cytology or BRAFV600E was 100% specific for malignancy. Combining cytology with ddPCR BRAF600E mutations testing increased the sensitivity of Bethesda classification from 41.7 to 75%. Combined BRAFV600E and Bethesda results had a positive predictive value (PPV) of 100% and negative predictive value (NPV) of 89.7% for thyroid malignancy in our cohort. Conclusions: DdPCR offers a novel and ultrasensitive method of detecting RAS and BRAF mutations from thyroid FNABs. BRAFV600E mutation testing by ddPCR may serve as a useful adjunct to increase sensitivity and specificity of thyroid FNAB.

Cite

CITATION STYLE

APA

Biron, V. L., Matkin, A., Kostiuk, M., Williams, J., Cote, D. W., Harris, J., … O’Connell, D. A. (2018). Analytic and clinical validity of thyroid nodule mutational profiling using droplet digital polymerase chain reaction. Journal of Otolaryngology - Head and Neck Surgery, 47(1). https://doi.org/10.1186/s40463-018-0299-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free