Masa studi mahasiswa merupakan tolak ukur penilaian keberhasilan Program Studi, karena masa studi merupakan salah satu indikator keberhasilan proses belajar mahasiswa. Permasalahan mahasiswa lulus tidak tepat waktu dan mahasiswa drop out (DO) masih menjadi kendala Program Studi saat ini. Tujuan penelitian ini adalah membangun sebuah model untuk prediksi awal masa studi mahasiswa, dimana saat ini implementasinya dilakukan pada Program Studi Informatika Universitas Tanjungpura. Keterlambatan mahasiswa dalam menempuh masa studi disebabkan karena kesulitan data pengetahuan yang terbatas tentang prediksi masa studi. Prediksi adalah suatu kegiatan untuk memperkirakan kejadian yang akan terjadi dimasa depan dengan menggunakan data yang sudah ada. Penggunakan model untuk melakukan prediksi masa studi bisa digunakan untuk menangani masalah kerumitan dan ketepatan hasil prediksi, dengan menggunakan metode pendekatan yang cocok untuk prediksi salah satunya adalah algoritma Decision Tree C4.5. Pengujian sistem yang dilakukan menggunakan Cofusion Matrix, menunjukan bahwa model prediksi yang dibangun menggunakan Decision Tree C4.5 menghasilkan rule yang baik digunakan untuk prediksi masa studi mahasiswa. Karena hasil perhitungan nilai akurasi terhadap prediksi yang dihasilkan dengan kenyataan sebenarnya menunjukan nilai precision, recall dan accuracy rata-rata diatas 50% sedangkan untuk nilai error rate berada dibawah 20% .
CITATION STYLE
Orpa, E. P. K., Ripanti, E. F., & Tursina, T. (2019). Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision Tree C4.5. Jurnal Sistem Dan Teknologi Informasi (JUSTIN), 7(4), 272. https://doi.org/10.26418/justin.v7i4.33163
Mendeley helps you to discover research relevant for your work.