ABSTRAK DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM. Konsep reaktor daya nuklir yang dikembangkan merupakan jenis reaktor berpendingin gas dengan temperatur tinggi (RGTT). Gas yang digunakan untuk mendinginkan teras RGTT adalah helium. Konsep RGTT ini dapat menghasilkan daya termal 30 MWth sehingga dinamakan RGTT30. Temperatur helium mampu mencapai 700 °C ketika keluar dari teras RGTT30 dan digunakan untuk memanaskan air di dalam steam generator hingga mencapai temperatur 435 °C. Steam generator dihubungkan dengan turbin uap yang dikopel dengan generator listrik untuk membangkitkan daya 7,27 MWe. Uap yang keluar dari turbin dilewatkan kondensor untuk mencairkan uap menjadi air. Rangkaian komponen dari steam generator, turbin, dan kondensor dinamakan sistem turbin uap. Turbin terdiri dari sudu-sudu yang dimaksudkan untuk mengubah tenaga uap kedalam tenaga mekanis berupa putaran. Efisiensi turbin merupakan parameter yang harus diperhatikan dalam sistem turbin uap ini. Tujuan dari makalah ini adalah untuk mengusulkan sudu tipe aksial dan untuk menganalisa perbaikan efisiensi turbin. Metode yang digunakan yaitu aplikasi prinsip termodinamika yang berhubungan dengan konservasi energi dan massa. Perangkat lunak Cycle-Tempo dipakai untuk mendapatkan parameter termodinamika dan untuk mensimulasikan sistem turbin uap berbasis RGTT30. Pertama, dibuat skenario dalam simulasi sistem turbin uap untuk mengetahui efisiensi dan laju aliran massa uap yang diperoleh nilai optimal 87,52 % dan 8,759 kg/s pada putaran 3000 rpm. Kemudian, turbin uap diberi sudu tipe aksial dengan diameter tip 1580 mm dan panjang 150 mm. Hasil yang diperoleh adalah nilai efisiensi turbin uap naik menjadi 88,3 % pada putaran konstan (3000 rpm). Penambahan nilai efisiensi turbin sebesar 0,78 % menunjukkan peningkatan kinerja RGTT30 secara keseluruhan. Kata kunci: Tipe aksial, turbin uap, RGTT30 ABSTRACT PRELIMINARY DESIGN ON STEAM TURBINE OF AXIAL TYPE FOR HELIUM-COOLED RGTT30 CONCEPT. The concept of a nuclear power reactor, which evolves, is high temperature gas-cooled reactor type (HTGR). Gas that is used to cool the HTGR core, is helium. The HTGR concept used in this study can yield thermal power of 30 MWth so that named RGTT30. Helium temperature can reach 700 °C when come out from the RGTT30 core and it is used for heating the water within steam generator to achieve the temperature of 435 °C. The steam generator is connected to a steam turbine, which is coupled with an electricity generator, for generating electric power of 7.27 MWe. The steam that comes out from the turbine is flowed through condenser for changing the steam into water. The component train of steam generator, turbine, and condenser was given the name of steam turbine system. The turbine consists of blades that are intended to transform the steam power into mechanical power in the form of rotational speed. Turbine efficiency is a parameter that must be considered in this steam turbine system. The aims of this paper are to propose blade of axial type and to analyze the efficiency improvement of the turbine. The method used is the application of the thermodynamic principles associated with conservations of energy and mass. Cycle-Tempo software is used to obtain thermodynamic parameters and to simulate the steam turbine system based on RGTT30. Firstly, a scenario is created to model and simulate the steam turbine system for determining the efficiency and the mass flow rate of steam. The optimal values for the efficiency and the mass flow rates at the speed of 3000 rpm are 87.52 % and 8.759 kg/s, respectively. Then, the steam turbine was given the blade of axial type with a tip diameter of 1580 mm and a length of 150 mm. The results obtained are turbine efficiency increasing to 88.3% on constant speed (3000 rpm). Enhancement in the turbine efficiency value of 0.78% showed raising the overall performance of RGTT30. Keywords: Axial type, steam turbine, RGTT30
CITATION STYLE
Sudadiyo, S., & Pane, J. S. (2016). DESAIN AWAL TURBIN UAP TIPE AKSIAL UNTUK KONSEP RGTT30 BERPENDINGIN HELIUM. JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA, 18(2), 65. https://doi.org/10.17146/tdm.2016.18.2.2319
Mendeley helps you to discover research relevant for your work.