Importance of detection for video surveillance applications

  • Gonzàlez J
14Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Though it is the first step of a real video surveillance application, detection has received less attention than tracking in research on video surveillance. We show, however, that the majority of errors in the tracking task are due to wrong detection. We show this by experimenting with a multi object tracking algorithm based on a Bayesian framework and a particle filter. This algorithm, which we have named iTrack, is specifically designed to work in practical applications by defining a statistical model of the object appearance to build a robust likelihood function. Likewise, we present an extension of a background subtraction algorithm to deal with active cameras. This algorithm is used in the detection task to initialize the tracker by means of a prior density. By defining appropriate performance metrics, the overall system is evaluated to elucidate the importance of detection for video surveillance applications. © 2008 Society of Photo-Optical Instrumentation Engineers.

Cite

CITATION STYLE

APA

Gonzàlez, J. (2008). Importance of detection for video surveillance applications. Optical Engineering, 47(8), 087201. https://doi.org/10.1117/1.2965548

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free