Recently, we have described a distance constraint in the unknown tertiary structure of the human dopamine transporter (hDAT) by identification of two histidines, His(193) in the second extracellular loop and His(375) at the top of transmembrane (TM) 7, that form two coordinates in an endogenous, high affinity Zn(2+)-binding site. To achieve further insight into the tertiary organization of hDAT, we set out to identify additional residues involved in Zn(2+) binding and subsequently to engineer artificial Zn(2+)-binding sites. Ten aspartic acids and glutamic acids, predicted to be on the extracellular side, were mutated to asparagine and glutamine, respectively. Mutation of Glu(396) (E396Q) at the top of TM 8 increased the IC(50) value for Zn(2+) inhibition of [(3)H]dopamine uptake from 1.1 to 530 microM and eliminated Zn(2+)-induced potentiation of [(3)H]WIN 35,428 binding. These data suggest that Glu(396) is involved in Zn(2+) binding to hDAT. Importantly, Zn(2+) sensitivity was preserved following substitution of Glu(396) with histidine, indicating that the effect of mutating Glu(396) is not an indirect effect because of the removal of a negatively charged residue. The common participation of Glu(396), His(193), and His(375) in binding the small Zn(2+) ion implies their proximity in the unknown tertiary structure of hDAT. The close association between TM 7 and 8 was further established by engineering of a Zn(2+)-binding site between His(375) and a cysteine inserted in position 400 in TM 8. Summarized, our data define an important set of proximity relationships in hDAT that should prove an important template for further exploring the molecular architecture of Na(+)/Cl(-)-dependent neurotransmitter transporters.
CITATION STYLE
Loland, C. J., Norregaard, L., & Gether, U. (1999). Defining Proximity Relationships in the Tertiary Structure of the Dopamine Transporter. Journal of Biological Chemistry, 274(52), 36928–36934. https://doi.org/10.1074/jbc.274.52.36928
Mendeley helps you to discover research relevant for your work.