Day-ahead forecasting of solar radiation is essential for grid balancing, real-time unit dispatching, scheduling and trading in the solar energy utilization system. In order to provide reliable forecasts of solar radiation, a novel hybrid model is proposed in this study. The hybrid model consists of two modules: a mesoscale numerical weather prediction model (WRF: Weather Research and Forecasting) and Kalman filter. However, the Kalman filter is less likely to predict sudden changes in the forecasting errors. To address this shortcoming, we develop a new framework to implement a Kalman filter based on the clearness index. The performance of this hybrid model is evaluated using a one-year dataset of solar radiation taken from a photovoltaic plant located at Maizuru, Japan and Qinghai, China, respectively. The numerical results reveal that the proposed hybrid model performs much better in comparison with the WRF-alone forecasts under different sky conditions. In particular, in the case of clear sky conditions, the hybrid model can improve the forecasting accuracy by 95.7% and 90.9% in mean bias error (MBE), and 42.2% and 26.8% in root mean square error (RMSE) for Maizuru and Qinghai sites, respectively.
CITATION STYLE
Che, Y., Chen, L., Zheng, J., Yuan, L., & Xiao, F. (2019). A novel hybrid model of WRF and clearness index-based kalman filter for day-ahead solar radiation forecasting. Applied Sciences (Switzerland), 9(19). https://doi.org/10.3390/app9193967
Mendeley helps you to discover research relevant for your work.