Pattern classification using an olfactory model with PCA feature selection in electronic noses: Study and application

32Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate. © 2012 by the authors.

Cite

CITATION STYLE

APA

Fu, J., Huang, C., Xing, J., & Zheng, J. (2012). Pattern classification using an olfactory model with PCA feature selection in electronic noses: Study and application. Sensors, 12(3), 2818–2830. https://doi.org/10.3390/s120302818

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free