Scheduling many-body short range MD simulations on a cluster of workstations and custom VLSI hardware

4Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Molecular dynamics is a powerful technique used to obtain static or dynamic properties of liquids and solids. The sheer computational intensity of many of these simulations demands more computational power than what any uniprocessor system can provide. Fortunately, these simulations can be parallelized, allowing faster execution times on a cluster of workstations. Of late, custom VLSI chips have been designed to provide an alternative to parallel techniques. The MD-GRAPE 2 is one such solution, offering a peak performance of 64 Gflops. We evaluate the performance and cost-effectiveness of various methods used in sequential and parallel molecular dynamics and the MD-GRAPE 2. We then illustrate how MD simulations involving more complex potential functions can be scheduled on parallel machines and the MD-GRAPE 2 simultaneously. © Springer-Verlag 2004.

Cite

CITATION STYLE

APA

Sumanth, J. V., Swanson, D. R., & Jiang, H. (2004). Scheduling many-body short range MD simulations on a cluster of workstations and custom VLSI hardware. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3296, 166–175. https://doi.org/10.1007/978-3-540-30474-6_22

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free