Keterbatasan kompetensi menjadi halangan untuk memulai melakukan kegiatan pekarangan perkotaan. Mempraktikkan langkah-langkah pada video instruksional populer di Youtube dari individu maupun profesional dapat meningkatkan kompetensi diri. Namun, kualitas video instruksional(konten, audio dan visual) sangat bervariasi bergantung pada orang yang memproduksinya. Penonton secara langsung dapat berinteraksi dengan memberikan apresiasi (positif maupun negatif), tanggapan atau pertanyaan pada kolom komentar seputar topik yang dipresentasikan. Umpan balik tersebut digunakan untuk memperbaiki kualitas dari video seperti memberikan penjelasan mendalam untuk topik yang sering ditanyakan dan melanjutkan atau menghentikan video berdasarkan topik yang paling disukai atau sebaliknya. Pekerjaan klasifikasi komentar dapat diselesaikan dengan mudah menggunakan Auto-Keras karena proses pemilihan model, pencarian arsitektur neural-network dan evaluasi model terbaik dilakukan secara otomatis. Penelitian pada umumnya terdiri atas empat fase, yaitu (1) pengumpulan dataset, (2) text processing, (3) feature engineering, dan (4) pemodelan dan evaluasi. Pada penelitian ini telah terkumpul 5194 komentar berlabel(aspirasi, pertanyaan, dan pernyataan) dari 5 video instruksional populer bertemakan pekarangan kota yang dikurasi oleh penulis berdasarkan urutan views, likes dan dislikes tertinggi. Kualitas kalimat komentar diperbaiki pada fase persiapan melalui proses text cleaning, normalization, tokenization dan stemming. Pada proses normalization, kamus istilah pertanian menjadi informasi agar tidak tercampur dengan bahasa informal yang mirip. Kalimat komentar yang telah normal dikonversikan menjadi n-gram dan word embedding sebagai input auto-keras. Dari hasil pengujian evaluasi model, akurasi yang dihasilkan auto-keras dengan fitur word embedding mencapai 86.91% sedikit lebih baik dari akurasi fitur n-gram 86.33%.Keterbatasan kompetensi menjadi halangan untuk memulai melakukan kegiatan pekarangan perkotaan. Mempraktikkan langkah-langkah pada video instruksional populer di Youtube dari individu maupun profesional dapat meningkatkan kompetensi diri. Namun, kualitas video instruksional(konten, audio dan visual) sangat bervariasi bergantung pada orang yang memproduksinya. Penonton secara langsung dapat berinteraksi dengan memberikan apresiasi (positif maupun negatif), tanggapan atau pertanyaan pada kolom komentar seputar topik yang dipresentasikan. Umpan balik tersebut digunakan untuk memperbaiki kualitas dari video seperti memberikan penjelasan mendalam untuk topik yang sering ditanyakan dan melanjutkan atau menghentikan video berdasarkan topik yang paling disukai atau sebaliknya. Pekerjaan klasifikasi komentar dapat diselesaikan dengan mudah menggunakan Auto-Keras karena proses pemilihan model, pencarian arsitektur neural-network dan evaluasi model terbaik dilakukan secara otomatis. Penelitian pada umumnya terdiri atas empat fase, yaitu (1) pengumpulan dataset, (2) text processing, (3) feature engineering, dan (4) pemodelan dan evaluasi. Pada penelitian ini telah terkumpul 5194 komentar berlabel(aspirasi, pertanyaan, dan pernyataan) dari 5 video instruksional populer bertemakan pekarangan kota yang dikurasi oleh penulis berdasarkan urutan views, likes dan dislikes tertinggi. Kualitas kalimat komentar diperbaiki pada fase persiapan melalui proses text cleaning, normalization, tokenization dan stemming. Pada proses normalization, kamus istilah pertanian menjadi informasi agar tidak tercampur dengan bahasa informal yang mirip. Kalimat komentar yang telah normal dikonversikan menjadi n-gram dan word embedding sebagai input auto-keras. Dari hasil pengujian evaluasi model, akurasi yang dihasilkan auto-keras dengan fitur word embedding mencapai 86.91% sedikit lebih baik dari akurasi fitur n-gram 86.33%.
CITATION STYLE
Gelar, T., & Sari, A. N. (2022). Klasifikasi Komentar Video Instruksional Populer Bertemakan Pekarangan Perkotaan menggunakan Auto-Keras. Journal of Software Engineering, Information and Communication Technology (SEICT), 1(1), 1–10. https://doi.org/10.17509/seict.v1i1.29050
Mendeley helps you to discover research relevant for your work.