Ubiquitination is one of the most prevalent protein post-translational modifications in eukaryotes, and its malfunction is associated with a variety of human diseases. Despite the significance of this process, the molecular mechanisms that govern the regulation of ubiquitination remain largely unknown. Here we used a combination of yeast proteome chip assays, genetic screening, and in vitro/in vivo biochemical analyses to identify and characterize eight novel in vivo substrates of the ubiquitinating enzyme Rsp5, a homolog of the human ubiquitin-ligating enzyme Nedd4, in yeast. Our analysis of the effects of a deubiquitinating enzyme, Ubp2, demonstrated that an accumulation of Lys-63-linked polyubiquitin chains results in processed forms of two substrates, Sla1 and Ygr068c. Finally we showed that the localization of another newly identified substrate, Rnr2, is Rsp5-dependent. We believe that our approach constitutes a paradigm for the functional dissection of an enzyme with pleiotropic effects. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Lu, J. Y., Lin, Y. Y., Qian, J., Tao, S. C., Zhu, J., Pickart, C., & Zhu, H. (2008). Functional dissection of a HECT ubiquitin E3 ligase. Molecular and Cellular Proteomics, 7(1), 35–45. https://doi.org/10.1074/mcp.M700353-MCP200
Mendeley helps you to discover research relevant for your work.