Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human

108Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multi-subunit transcription factors (TF) direct RNA polymerase (pol) III to synthesize a variety of essential small transcripts such as tRNAs, 5S rRNA and U6 snRNA. Use by pol III of both TATA-less and TATA-containing promoters, together with progress in the Saccharomyces cerevisiae and human systems towards elucidating the mechanisms of actions of the pol III TFs, provides a paradigm for eukaryotic gene transcription. Human and S.cerevisiae pol III components reveal good general agreement in the arrangement of orthologous TFs that are distributed along tRNA gene control elements, beginning upstream of the transcription initiation site and extending through the 3′ terminator element, although some TF subunits have diverged beyond recognition. For this review we have surveyed the Schizosaccharomyces pombe database and identified 26 subunits of pol III and associated TFs that would appear to represent the complete core set of the pol III machinery. We also compile data that indicate in vivo expression and/or function of 18 of the fission yeast proteins. A high degree of homology occurs in pol III, TFIIIB, TFIIIA and the three initiation-related subunits of TFIIIC that are associated with the proximal promoter element, while markedly less homology is apparent in the downstream TFIIIC subunits. The idea that the divergence in downstream TFIIIC subunits is associated with differences in pol III termination-related mechanisms that have been noted in the yeast and human systems but not reviewed previously is also considered.

Cite

CITATION STYLE

APA

Huang, Y., & Maraia, R. J. (2001). Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Research, 29(13), 2675–2690. https://doi.org/10.1093/nar/29.13.2675

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free