Here, we report the identification of a new tensin family member, tensin3, and its role in epidermal growth factor (EGF) signaling pathway. Human tensin3 cDNA encodes a 1445 amino acid sequence that shares extensive homology with tensin1, tensin2, and COOH-terminal tensin-like protein. Tensin3 is expressed in various tissues and in different cell types such as endothelia, epithelia, and fibroblasts. The potential role of tensin3 in EGF-induced signaling pathway is explored. EGF induces tyrosine phosphorylation of tensin3 in MDA-MB-468 cells in a time- and dose-dependent manner, but it is independent of an intact actin cytoskeleton or phosphatidylinositol 3-kinase. Activation of EGF receptor is necessary but not sufficient for tyrosine phosphorylation of tensin3. It also requires Src family kinase activities. Furthermore, tensin3 forms a complex with focal adhesion kinase and p130Cas in MDA-MB-468 cells. Addition of EGF to the cells induces dephosphorylation of these two molecules, leads to disassociation of the tensin3-focal adhesion kinase-p130Cas complex, and enhances the interaction between tensin3 and EGF receptor. Our results demonstrate that tensin3 may function as a platform for the disassembly of EGF-related signaling complexes at focal adhesions.
CITATION STYLE
Cui, Y., Liao, Y. C., & Lo, S. H. (2004). Epidermal growth factor modulates tyrosine phosphorylation of a novel tensin family member, tensin3. Molecular Cancer Research, 2(4), 225–232. https://doi.org/10.1158/1541-7786.225.2.4
Mendeley helps you to discover research relevant for your work.