Abstract—Web attacks include types of attacks to websites and web applications to steal sensitive information, to possibly disrupt web-based service systems and even to take control of the web systems. In order to defend against web attacks, a number of tools and techniques have been developed and deployed in practice for monitoring, detecting and preventing web attacks to protect websites, web applications and web users. It is necessary to survey and evaluate existing tools and techniques for monitoring and detecting web attacks because this information can be used for the selection of suitable tools and techniques for monitoring and detecting web attacks for specific websites and web applications. In the first half, the paper surveys some typical tools and techniques for monitoring and detecting web attacks, which have been proposed and applied in practice. The paper’s later half presents the experiment and efficiency evaluation of a web attack detection model based on machine learning. Experimental results show that the machine learning based model for web attack detection produces a high detection accuracy of 99.57% and the model has the potential for practical deployment.Tóm tắt—Tấn công web gồm các dạng tấn công vào các website và ứng dụng web nhằm đánh cắp các thông tin nhạy cảm, có thể gây ngưng trệ hệ thống dịch vụ, hoặc chiếm quyền kiểm soát hệ thống. Để phòng chống tấn công web, nhiều kỹ thuật và công cụ đã được nghiên cứu, phát triển và ứng dụng trong thực tế phục vụ giám sát, phát hiện và ngăn chặn dạng tấn công này nhằm bảo vệ các website, ứng dụng web và người dùng web. Việc khảo sát, đánh giá các công cụ và kỹ thuật giám sát, phát hiện tấn công web hiện có là cơ sở cho lựa chọn công cụ, kỹ thuật phát hiện tấn công web phù hợp cho các hệ thống website, ứng dụng web cụ thể. Trong phần đầu, bài báo này khảo sát một số công cụ và kỹ thuật giám sát, phát hiện tấn công web tiêu biểu đã được nghiên cứu, phát triển và ứng dụng trên thực tế. Phần sau của bài báo trình bày nội dung thử nghiệm, đánh giá hiệu quả của một mô hình phát hiện tấn công web dựa trên học máy. Các kết quả thử nghiệm cho thấy, mô hình phát hiện tấn công web dựa trên học máy cho độ chính xác đạt tới 99.57%, có tiềm năng triển khai hiệu quả trên thực tế.
CITATION STYLE
Dau, H. X., Trang, N. T. T., & Hung, N. T. (2022). A Survey of Tools and Techniques for Web Attack Detection. Journal of Science and Technology on Information Security, 1(15), 109–118. https://doi.org/10.54654/isj.v1i15.852
Mendeley helps you to discover research relevant for your work.