Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation

80Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this article a potential role of snowflake growth by aggregation on formation of dual-polarization radar signatures in winter storms is discussed. We advocate that the observed bands of increased values of specific differential phase (Kdp) can be linked to the onset of aggregation. These bands are caused by high number concentrations of oblate relatively dense ice particles and take place in regions where an ice phase “seeder-feeder” is active. On the other hand, the differential reflectivity (Zdr) bands, in absence of detectable Kdp values, are observed in the areas where crystal growth is the dominating snow growth mechanism and ice particle number concentration is lower. This distinction in underlying processes explains why Kdp and Zdr bands are not always observed at the same time. Furthermore, based on surface observations of snowflakes, it is determined that early aggregates, consisting of a small number of ice crystals, are oblate. These oblate particles could contribute to the reported dual-polarization radar signatures in snow, especially to the Kdp. This could help to explain why, where observed at the same type, Kdp and Zdr bands do not match and the altitude of the peak value of Kdp is usually lower than the Zdr one. It also means that dual-polarization radar signatures of snowflakes may depend on a stage of aggregation.

Cite

CITATION STYLE

APA

Moisseev, D. N., Lautaportti, S., Tyynela, J., & Lim, S. (2015). Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. Journal of Geophysical Research, 120(24), 12,644-12,665. https://doi.org/10.1002/2015JD023884

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free