Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice

  • Lee T
  • Chia-Che Tsai
  • Chih-Hsien Chang
  • et al.
N/ACitations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

BACKGROUND Nanoliposomes are designed as carriers capable of packaging drugs through passive targeting tumor sites by enhanced permeability and retention (EPR) effects. In the present study the biodistribution, pharmacokinetics, micro single-photon emission computed tomography (micro-SPECT/CT) image, dosimetry, and therapeutic efficacy of (188)Re-labeled nanoliposomes ((188)Re-liposomes) in a C26 colonic peritoneal carcinomatosis mouse model were evaluated. METHODS Colon carcinoma peritoneal metastatic BALB/c mice were intravenously administered (188)Re-liposomes. Biodistribution and micro-SPECT/CT imaging were performed to determine the drug profile and targeting efficiency of (188)Re-liposomes. Pharmacokinetics study was described by a noncompartmental model. The OLINDA|EXM computer program was used for the dosimetry evaluation. For therapeutic efficacy, the survival, tumor, and ascites inhibition of mice after treatment with (188)Re-liposomes and 5-fluorouracil (5-FU), respectively, were evaluated and compared. RESULTS In biodistribution, the highest uptake of (188)Re-liposomes in tumor tissues (7.91% ± 2.02% of the injected dose per gram of tissue [%ID/g]) and a high tumor to muscle ratio (25.8 ± 6.1) were observed at 24 hours after intravenous administration. The pharmacokinetics of (188)Re-liposomes showed high circulation time and high bioavailability (mean residence time [MRT] = 19.2 hours, area under the curve [AUC] = 820.4%ID/g*h). Micro-SPECT/CT imaging of (188)Re-liposomes showed a high uptake and targeting in ascites, liver, spleen, and tumor. The results were correlated with images from autoradiography and biodistribution data. Dosimetry study revealed that the (188)Re-liposomes did not cause high absorbed doses in normal tissue but did in small tumors. Radiotherapeutics with (188)Re-liposomes provided better survival time (increased by 34.6% of life span; P < 0.05), tumor and ascites inhibition (decreased by 63.4% and 83.3% at 7 days after treatment; P < 0.05) in mice compared with chemotherapeutics of 5-fluorouracil (5-FU). CONCLUSION The use of (188)Re-liposomes for passively targeted tumor therapy had greater therapeutic effect than the currently clinically applied chemotherapeutics drug 5-FU in a colonic peritoneal carcinomatosis mouse model. This result suggests that (188)Re-liposomes have potential benefit and are safe in treating peritoneal carcinomatasis of colon cancer.

Cite

CITATION STYLE

APA

Lee, T.-W., Chia-Che Tsai, Chih-Hsien Chang, Liang-Cheng Chen, Ya-Jen Chang, Keng-Li Lan, … ting, gann. (2011). Biodistribution and pharmacokinetics of 188Re-liposomes and their comparative therapeutic efficacy with 5-fluorouracil in C26 colonic peritoneal carcinomatosis mice. International Journal of Nanomedicine, 2607. https://doi.org/10.2147/ijn.s23834

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free