The thieves on sesame street are polyglots - Extracting multilingual models from monolingual APIs

2Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

Abstract

Pre-training in natural language processing makes it easier for an adversary with only query access to a victim model to reconstruct a local copy of the victim by training with gibberish input data paired with the victim's labels for that data. We discover that this extraction process extends to local copies initialized from a pre-trained, multilingual model while the victim remains monolingual. The extracted model learns the task from the monolingual victim, but it generalizes far better than the victim to several other languages. This is done without ever showing the multilingual, extracted model a well-formed input in any of the languages for the target task. We also demonstrate that a few real examples can greatly improve performance, and we analyze how these results shed light on how such extraction methods succeed.

Cite

CITATION STYLE

APA

Keskar, N. S., McCann, B., Xiong, C., & Socher, R. (2020). The thieves on sesame street are polyglots - Extracting multilingual models from monolingual APIs. In EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 6203–6207). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2020.emnlp-main.501

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free