Permeability is an important petrophysical parameter that controls the fluid flow within the reservoir. Estimating permeability presents several challenges due to the conventional approach of core analysis or well testing, which are expensive and time-consuming. On the contrary, artificial intelligence has been adopted in recent years in predicting reliable permeability data. Despite its shortcomings of overfitting and low convergence speed, artificial neural network (ANN) has been the widely used artificial intelligent method. Based on this, the present study conducted permeability prediction using the group method of data handling (GMDH) neural network from well log data of the West arm of the East African Rift Valley. Comparative analysis of GMDH permeability model and ANN methods of the back propagation neural network (BPNN) and radial basis function neural network (RBFNN) were further explored. The results of the study showed that the proposed GMDH model outperformed BPNN and RBFNN as it achieved R/root mean square error (RMSE) value of 0.989/0.0241 for training and 0.868/0.204 for predicting, respectively. Sensitivity analysis carried out revealed that shale volume, standard resolution formation density, and thermal neutron porosity were the most influential well log parameters when developing the GMDH permeability model.
CITATION STYLE
Mathew Nkurlu, B., Shen, C., Asante-Okyere, S., Mulashani, A. K., Chungu, J., & Wang, L. (2020). Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data. Energies, 13(3), 551. https://doi.org/10.3390/en13030551
Mendeley helps you to discover research relevant for your work.