The aim of this study was to evaluate the nanoleakage patterns in indirect composite restorations bonding to dentin using different combinations of Resin Coating, after thermal and load cycling. Twenty five extracted third molars were used in the study; two box-like Class II cavities were prepared in each tooth (mesial and distal surface). The 50 cavities were distributed in 5 groups according to the RC materials combinations: G1: Etch-rinse 2 steps/Hydrophobic monomer; G2: Etch-rinse 2steps/Flow composite-resin, G3: Self-etch 1step, G4: Self-etch1step/Flowable composite resin liner, G5: Self-etch 2step/Flowable composite-resin liner. The cavities were molded with a vinyl polysiloxane impression material and the molds were poured with stone plaster. The fillings were confectioned using the Sinfony composite system (3 M/ESPE) and cemented with resin luting cement (Rely X ARC). After 24 hours, the teeth were submitted to thermocycling (2000 cycles, 5° to 55°C) and load cycling (250,000 cycles, 30 N). Past 24hours, the restored teeth were sectioned into serial slabs and immersed in 50% ammoniacal silver nitrate for 24 h, exposed to photo-developing solution for 8 h, carbon coated and observed in SEM using backscattered electron mode. Diverse nanoleakage patterns were observed for the different RC combinations. Silver accumulation were observed in the entire thickness of the hybrid layer in G1 and G2 groups, while in the “all in one” self-etch groups (G3 and G4) silver accumulations similar to “water trees” within the adhesive layer were observed. In G5 group, less nanoleakage than other groups was observed and it was limited to the hybrid layer. The group G5 presented a superior behavior and revealed less nanoleakage compared to the other groups.
CITATION STYLE
Medina, A. D. C., de Paula, A. B., Naufel, F. S., Puppin-rontani, R. M., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2014). Nanoleakage in indirect composite restorations using different combinations of resin coating technique. Applied Adhesion Science, 2(1). https://doi.org/10.1186/2196-4351-2-5
Mendeley helps you to discover research relevant for your work.