Structure of angiotensin I-converting enzyme

95Citations
Citations of this article
99Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of α-helices, is characterised by a core channel that has a constriction approximately 10 Å from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors.

Cite

CITATION STYLE

APA

Sturrock, E. D., Natesh, R., Van Rooyen, J. M., & Acharya, K. R. (2004, November). Structure of angiotensin I-converting enzyme. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-004-4239-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free