Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2 -/- (Abcb4 -/-) mouse cholangiopathy model by promoting biliary HCO3- output

203Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.

Abstract

Chronic cholangiopathies have limited therapeutic options and represent an important indication for liver transplantation. The nuclear farnesoid X receptor (FXR) and the membrane G protein-coupled receptor, TGR5, regulate bile acid (BA) homeostasis and inflammation. Therefore, we hypothesized that activation of FXR and/or TGR5 could ameliorate liver injury in Mdr2 -/- (Abcb4 -/-) mice, a model of chronic cholangiopathy. Hepatic inflammation, fibrosis, as well as bile secretion and key genes of BA homeostasis were addressed in Mdr2 -/- mice fed either a chow diet or a diet supplemented with the FXR agonist, INT-747, the TGR5 agonist, INT-777, or the dual FXR/TGR5 agonist, INT-767 (0.03% w/w). Only the dual FXR/TGR5 agonist, INT-767, significantly improved serum liver enzymes, hepatic inflammation, and biliary fibrosis in Mdr2 -/- mice, whereas INT-747 and INT-777 had no hepatoprotective effects. In line with this, INT-767 significantly induced bile flow and biliary HCO3- output, as well as gene expression of carbonic anhydrase 14, an important enzyme able to enhance HCO3- transport, in an Fxr-dependent manner. In addition, INT-767 dramatically reduced bile acid synthesis via the induction of ileal Fgf15 and hepatic Shp gene expression, thus resulting in significantly reduced biliary bile acid output in Mdr2 -/- mice. Conclusion: This study shows that FXR activation improves liver injury in a mouse model of chronic cholangiopathy by reduction of biliary BA output and promotion of HCO3--rich bile secretion. © 2011 American Association for the Study of Liver Diseases.

Cite

CITATION STYLE

APA

Baghdasaryan, A., Claudel, T., Gumhold, J., Silbert, D., Adorini, L., Roda, A., … Trauner, M. (2011). Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2 -/- (Abcb4 -/-) mouse cholangiopathy model by promoting biliary HCO3- output. Hepatology, 54(4), 1303–1312. https://doi.org/10.1002/hep.24537

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free