Multi-scale ensemble learning for thermal image enhancement

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In this study, we propose a multi-scale ensemble learning method for thermal image enhancement in different image scale conditions based on convolutional neural networks. Incorporating the multiple scales of thermal images has been a tricky task so that methods have been individually trained and evaluated for each scale. However, this leads to the limitation that a network properly operates on a specific scale. To address this issue, a novel parallel architecture leveraging the confidence maps of multiple scales have been introduced to train a network that operates well in varying scale conditions. The experimental results show that our proposed method outperforms the conventional thermal image enhancement methods. The evaluation is presented both quantitatively and qualitatively.

Cite

CITATION STYLE

APA

Ban, Y., & Lee, K. (2021). Multi-scale ensemble learning for thermal image enhancement. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062810

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free