Objective. To systematize the neurological manifestations of COVID-19. Materials and methods. A systematic computerized analysis of all currently available publications on the neurological manifestations of COVID-19 was undertaken (2374 reports in PubMed) by topological data analysis. Results. A set of interactions between infection with SARS-CoV-2, metabolic impairments affecting neurotransmitters (acetylcholine, dopamine, serotonin, and GABA), enkephalins, and neurotrophins, micronutrients, chronic and acute inflammation, encephalopathy, cerebral ischemia, and neurodegeneration (including demyelination) was described. The most typical neurological manifestations of COVID-19 were anosmia/ageusia due to ischemia, neurodegeneration, and/or systematic increases in proinflammatory cytokine levels. COVID-19 provoked ischemic stroke, Guillain–Barré syndrome, polyneuropathy, encephalitis, meningitis, and parkinsonism. Coronavirus infection increased the severity of multiple sclerosis and myopathies. The possible roles of the human virome in the pathophysiology of COVID-19 are considered. A clinical case of a patient with neurological complications of COVID-19 is described. Conclusions. In the long-term perspective, COVID-19 promotes increases in neurodegenerative changes, which requires special neurological rehabilitation programs. Use of cholinergic drugs and antihypoxic agents compatible with COVID-19 therapy is advised.
CITATION STYLE
Gromova, O. A., Torshin, I. Y., Semenov, V. A., Putilina, M. V., & Chuchalin, A. G. (2021). Direct and Indirect Neurological Signs of COVID-19. Neuroscience and Behavioral Physiology, 51(7), 856–866. https://doi.org/10.1007/s11055-021-01144-9
Mendeley helps you to discover research relevant for your work.