Members of the Rid protein family have broad imine deaminase activity and can accelerate the Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro

23Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The Rid (YjgF/YER057c/UK114) protein family is a group of small, sequence diverse proteins that consists of eight subfamilies. The archetypal RidA subfamily is found in all domains, while the Rid1-7 subfamilies are present only in prokaryotes. Bacterial genomes often encode multiple members of the Rid superfamily. The best characterized member of this protein family, RidA from Salmonella enterica, is a deaminase that quenches the reactive metabolite 2-aminoacrylate generated by pyridoxal 5'-phosphate-dependent enzymes and ultimately spares certain enzymes from damage. The accumulation of 2-aminoacrylate can damage enzymes and lead to growth defects in bacteria, plants, and yeast. While all subfamily members have been annotated as imine deaminases based on the RidA characterization, experimental evidence to support this annotation exists for a single protein outside the RidA subfamily. Here we report that six proteins, spanning Rid subfamilies 1-3, deaminate a variety of imine/enamine substrates with differing specific activities. Proteins from the Rid2 and Rid3 subfamilies, but not from the RidA and Rid1 subfamilies deaminated iminoarginine, generated in situ by the Pseudomonas aeruginosa D-arginine dehydrogenase DauA. These data biochemically distinguished the subfamilies and showed Rid proteins have activity on a metabolite that is physiologically relevant in Pseudomonas and other bacteria.

Cite

CITATION STYLE

APA

Hodge-Hanson, K. M., & Downs, D. M. (2017). Members of the Rid protein family have broad imine deaminase activity and can accelerate the Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0185544

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free