Mechanisms Underpinning Morphogenesis of a Symbiotic Organ Specialized for Hosting an Indispensable Microbial Symbiont in Stinkbugs

3Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microbial mutualists are pivotal for insect adaptation, which often entails the evolution of elaborate organs for symbiosis. Addressing what mechanisms underpin the development of such organs is of evolutionary interest. Here, we investigated the stinkbug Plautia stali, whose posterior midgut is transformed into a specialized symbiotic organ. Despite being a simple tube in newborns, it developed numerous crypts in four rows, whose inner cavity hosts a specific bacterial symbiont, during the 1st to 2nd nymphal instar stages. Visualization of dividing cells revealed that active cell proliferation was coincident with the crypt formation, although spatial patterns of the proliferating cells did not reflect the crypt arrangement. Visualization of visceral muscles in the midgut, consisting of circular muscles and longitudinal muscles, uncovered that, strikingly, circular muscles exhibited a characteristic arrangement running between the crypts specifically in the symbiotic organ. Even in the early 1st instar stage, when no crypts were seen, two rows of epithelial areas delineated by bifurcated circular muscles were identified. In the 2nd instar stage, crossing muscle fibers appeared and connected the adjacent circular muscles, whereby the midgut epithelium was divided into four rows of crypt-to-be areas. The crypt formation proceeded even in aposymbiotic nymphs, revealing the autonomous nature of the crypt development. We propose a mechanistic model of crypt formation wherein the spatial arrangement of muscle fibers and the proliferation of epithelial cells underpin the formation of crypts as midgut evaginations. IMPORTANCE Diverse organisms are associated with microbial mutualists, in which specialized host organs often develop for retaining the microbial partners. In light of the origin of evolutionary novelties, it is important to understand what mechanisms underpin the elaborate morphogenesis of such symbiotic organs, which must have been shaped through interactions with the microbial symbionts. Using the stinkbug Plautia stali as a model, we demonstrated that visceral muscular patterning and proliferation of intestinal epithelial cells during the early nymphal stages are involved in the formation of numerous symbiont-harboring crypts arranged in four rows in the posterior midgut to constitute the symbiotic organ. Strikingly, the crypt formation occurred normally even in symbiont-free nymphs, revealing that the crypt development proceeds autonomously. These findings suggest that the crypt formation is deeply implemented into the normal development of P. stali, which must reflect the considerably ancient evolutionary origin of the midgut symbiotic organ in stinkbugs.

Cite

CITATION STYLE

APA

Oishi, S., Harumoto, T., Okamoto-Furuta, K., Moriyama, M., & Fukatsu, T. (2023). Mechanisms Underpinning Morphogenesis of a Symbiotic Organ Specialized for Hosting an Indispensable Microbial Symbiont in Stinkbugs. MBio, 14(2). https://doi.org/10.1128/mbio.00522-23

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free