Cooperation of two distinct coupling proteins creates chemosensory network connections

20Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA - CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.

Cite

CITATION STYLE

APA

Abedrabbo, S., Castellon, J., Collins, K. D., Johnson, K. S., & Ottemann, K. M. (2017). Cooperation of two distinct coupling proteins creates chemosensory network connections. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2970–2975. https://doi.org/10.1073/pnas.1618227114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free