On the configuration LP for maximum budgeted allocation

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We study the Maximum Budgeted Allocation problem, i.e., the problem of selling a set of m indivisible goods to n players, each with a separate budget, such that we maximize the collected revenue. Since the natural assignment LP is known to have an integrality gap of, which matches the best known approximation algorithms, our main focus is to improve our understanding of the stronger configuration LP relaxation. In this direction, we prove that the integrality gap of the configuration LP is strictly better than, and provide corresponding polynomial time roundings, in the following restrictions of the problem: (i) the Restricted Budgeted Allocation problem, in which all the players have the same budget and every item has the same value for any player it can be sold to, and (ii) the graph MBA problem, in which an item can be assigned to at most 2 players. Finally, we improve the best known upper bound on the integrality gap for the general case from 5/6 to 2√2 2 ≈ 0.828 and also prove hardness of approximation results for both cases. © 2014 Springer International Publishing Switzerland.

Cite

CITATION STYLE

APA

Kalaitzis, C., Ma̧dry, A., Newman, A., Poláček, L., & Svensson, O. (2014). On the configuration LP for maximum budgeted allocation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8494 LNCS, pp. 333–344). Springer Verlag. https://doi.org/10.1007/978-3-319-07557-0_28

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free