We report on a novel quantum well intermixing (QWI) technique that induces a large degree of bandgap blueshift in the InGaP/InAlGaP laser structure. In this technique, high external compressive strain induced by a thick layer of SiO2 cap with a thickness ≥1 μm was used to enhance QWI in the tensile-strained InGaP/InAlGaP quantum well layer. A bandgap blueshift as large as 200 meV was observed in samples capped with 1-μm SiO2 and annealed at 1000 °C for 120 s. To further enhance the degree of QWI, cycles of annealing steps were applied to the SiO2 cap. Using this method, wavelength tunability over the range of 640 nm to 565 nm (∼250 meV) was demonstrated. Light-emitting diodes emitting at red (628 nm), orange (602 nm), and yellow (585 nm) wavelengths were successfully fabricated on the intermixed samples. Our results show that this new QWI method technique may pave the way for the realization of high-efficiency orange and yellow light-emitting devices based on the InGaP/InAlGaP material system.
CITATION STYLE
Al-Jabr, A. A., Majid, M. A., Alias, M. S., Anjum, D. H., Ng, T. K., & Ooi, B. S. (2016). Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing. Journal of Applied Physics, 119(13). https://doi.org/10.1063/1.4945104
Mendeley helps you to discover research relevant for your work.