The repetitive large loads generated during high-speed training and racing commonly cause subchondral bone injuries in the metacarpal condyles of racehorses. Adaptive bone modelling leads to focal sclerosis at the site of highest loading in the palmar aspect of the metacarpal condyles. Information on whether and how adaptive modelling of subchondral bone changes during the career of a racehorse is sparse. The aim of this cross-sectional study was to describe the changes in subchondral bone micromorphology in the area of highest loading in the palmar aspect of the metacarpal condyle in thoroughbred racehorses as a function of age and training. Bone morphology parameters derived from micro-CT images were evaluated using principal component analysis and mixed-effects linear regression models. The largest differences in micromorphology were observed in untrained horses between the age of 16 and 20 months. Age and duration of a training period had no influence on tissue mineral density, bone volume fraction or number and area of closed pores to a depth of 5.1 mm from the articular surface in 2- to 4-year-old racehorses in training. Horses with subchondral bone injuries had more pores in cross-section compared with horses without subchondral bone injuries. Differences in bone volume fraction were due to the volume of less mineralised bone. Tissue mineral density increased and bone volume fraction decreased with increasing distance from the articular surface up to 5.1 mm from the articular surface. Further research is required to elucidate the biomechanical and pathophysiological consequences of these gradients of micromorphological parameters in the subchondral bone.
CITATION STYLE
Martig, S., Hitchens, P. L., Stevenson, M. A., & Whitton, R. C. (2018). Subchondral bone morphology in the metacarpus of racehorses in training changes with distance from the articular surface but not with age. Journal of Anatomy, 232(6), 919–930. https://doi.org/10.1111/joa.12794
Mendeley helps you to discover research relevant for your work.