Anti-synchronization of hyperchaotic systems via novel sliding mode control and its application to Vaidyanathan Hyperjerk system

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Chaos in nonlinear dynamics occurs widely in physics, chemistry, biology, ecology, secure communications, cryptosystems and many scientific branches. Anti-synchronization of chaotic systems is an important research problem in chaos theory. Sliding mode control is an important method used to solve various problems in control systems engineering. In robust control systems, the sliding mode control is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as insensitivity to parameter uncertainties and disturbance. In this work, we derive a novel sliding mode control method for the anti-synchronization of identical chaotic or hyperchaotic systems. The general result derived using novel sliding mode control method is proved using Lyapunov stability theory. As an application of the general result, the problem of antisynchronization of identical Vaidyanathan hyperjerk hyperchaotic systems (2015) is studied and a new sliding mode controller is derived. The Lyapunov exponents of the Vaidyanathan hyperjerk system are obtained as L1 = 0.1448, L2 = 0.0328, L3 = 0 and L4 = −1.1294. Since the Vaidyanathan hyperjerk system has two positiveLyapunov exponents, it is hyperchaotic. Also, the Kaplan–Yorke dimension of the Vaidyanathan hyperjerk system is obtained as DKY = 3.1573. Numerical simulations using MATLAB have been shown to depict the phase portraits of the Vaidyanathan hyperjerk system and the sliding mode controller design for the anti-synchronization of identical Vaidyanathan hyperjerk systems.

Cite

CITATION STYLE

APA

Vaidyanathan, S., & Sampath, S. (2016). Anti-synchronization of hyperchaotic systems via novel sliding mode control and its application to Vaidyanathan Hyperjerk system. In Studies in Computational Intelligence (Vol. 635, pp. 143–158). Springer Verlag. https://doi.org/10.1007/978-3-319-30169-3_8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free