Effects of Sheared Edge and Overlap Length on Reduction in Tensile Fatigue Limit before and after Hydrogen Embrittlement of Resistance Spot-Welded Ultra-High-Strength Steel Sheets

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The effects of a sheared edge and overlap length on the reduction in the tensile fatigue limit before and after hydrogen embrittlement of resistance spot-welded ultra-high-strength steel sheets were investigated. Ultra-high-strength steel sheets with sheared and laser-cut edges were subjected to resistance spot welding followed by hydrogen embrittlement via cathodic hydrogen charging and subjected to static tensile shear and fatigue tests. The distance between the resistance spot weld and the sheared and laser-cut edges was changed by changing the overlap length, and the influence of the weld position was investigated. In the tensile shear test, the maximum load decreased with decreasing overlap length and the maximum load decreased with hydrogen embrittlement, but the effect of hydrogen embrittlement was smaller than that in the fatigue test. In the fatigue test, the fatigue mode changed from the width direction to the sheared edge direction with the increase in the repeated load. Even if the overlap length was reduced, the fracture changed to the sheared edge direction. In the specimens with sheared edges, the effect of fatigue limit reduction due to hydrogen embrittlement was greater than in the specimens with laser surfaces. In particular, the effect was greatest when the fatigue mode was changed via hydrogen embrittlement.

Cite

CITATION STYLE

APA

Yagita, R., & Abe, Y. (2023). Effects of Sheared Edge and Overlap Length on Reduction in Tensile Fatigue Limit before and after Hydrogen Embrittlement of Resistance Spot-Welded Ultra-High-Strength Steel Sheets. Metals, 13(12). https://doi.org/10.3390/met13122002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free