Amplitude versus offset analysis of P to P reflection is often used in exploration seismology for hydrocarbon exploration. In the present work, the feasibility to estimate crustal velocity structure from transmitted P to S wave amplitude variation with ray-parameter has been investigated separately for dipping layer and anisotropy medium. First, for horizontal and isotropic medium, the approximation of P-to-s conversion is used that is expressed as a linear form in terms of slowness. Next, the intercept of the linear regression has been used to estimate the shear wave velocity contrast (δβ) across an interface. The formulation holds good for isotropic and horizontal layer medium. Application of such formula to anisotropic medium or dipping layer data may lead to erroneous estimation of δβ. In order to overcome this problem, a method has been proposed to compensate the SV-amplitude using shifted version of SH-amplitude, and subsequently transforming SV amplitudes equivalent to that from isotropic or horizontal layer medium as the case may be. Once this transformation has been done, δβ can be estimated using isotropic horizontal layer formula. The shifts required in SH for the compensation are φ/2 and φ/4 for dipping layer and anisotropic medium, respectively. The effectiveness of the approach has been reported using various synthetic data sets. The methodology is also tested on real data from HI-CLIMB network in Himalaya, where the presence of dipping Moho has already been reported. The result reveals that the average shear wave velocity contrast across the Moho is larger towards the Indian side compared to the higher Himalayan and Tibetan regions.
CITATION STYLE
Prakash, K. (2015). Estimation of shear velocity contrast for dipping or anisotropic medium from transmitted Ps amplitude variation with ray-parameter. Geophysical Journal International, 203(3), 2248–2260. https://doi.org/10.1093/gji/ggv417
Mendeley helps you to discover research relevant for your work.