RF-based gesture sensing and recognition has increasingly attracted intense academic and industrial interest due to its various device-free applications in daily life, such as elder monitoring, mobile games. State-of-the-art approaches achieved accurate gesture sensing by using fine-grained RF signatures (such as CSI, Doppler effect) while could not achieve the same accuracy with coarse-grained RF signatures such as received signal strength (RSS). This paper presents rRuler, a novel feature extraction method which aims to get fine-grained human gesture features with coarse-grained RSS readings, which means rought ruler could measure fine things. In order to further verify the performance of rRuler, we further propose rRuler-HMM, a hidden Markov model (HMM) based human gesture sensing and prediction algorithm which utilizes the features extracted by rRuler as input. We implemented rRuler and rRuler-HMM using TI Sensortag platforms and off-the-shelf (CTOS) laptops in an indoor environment, extensively performance evaluations show that rRuler and rRuler-HMM stand out for their low cost and high practicability, and the average gesture sensing accuracy of rRuler-HMM can achieve 95.71% in NLoS scenario and 97.14% in LoS scenario, respectively, which is similar to the performance that fine-grained RF signatures based approaches could achieve.
CITATION STYLE
Sun, H., Lu, Z., Chen, C. L., Cao, J., & Tan, Z. (2019). Accurate Human Gesture Sensing with Coarse-Grained RF Signatures. IEEE Access, 7, 81227–81245. https://doi.org/10.1109/ACCESS.2019.2923574
Mendeley helps you to discover research relevant for your work.