Maximizing content of Omega-3 (EPA and DHA) in the process of enzymatic acidolysis of canola oil and concentrated of long-chain polyunsaturated fatty acids (LCPUFA) in supercritical CO2 conditions

  • Cedano Romero J
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to optimize the content of EPA and DHA in the process of enzymatic acidolysis of canola oil and concentrated of long-chain polyunsaturated fatty acids (LCPUFA) in structured triacylglycerols (TAGs). For this purpose, nonspecific lipase B from Candida antarctica immobilized in a supercritical CO2 was used. Crude salmon oil obtained from the industrial byproducts was used to obtain LCPUFA concentrate. Initially, a LCPUFAs concentrate was obtained by basic hydrolysis and posterior complexation with urea. Subsequently the process variables were optimized enzymatic acidolysis were optimized using a central composite rotational design 25-1 + star, with 5 factors and 30 experimental trials, based on the response surface methodology. The optimal conditions that maximized the content of EPA and DHA to 3.92 g/100 g TFA and 9.09 g/100 g TFA, respectively in the purified TAGs corresponded to a LCPUFA percentage 71.71% and canola oil percentage 28.29%, temperature 57.8 °C, pressure 172.0 bar, time 23.97 h enzyme percentage of 7.74%.

Cite

CITATION STYLE

APA

Cedano Romero, J. (2015). Maximizing content of Omega-3 (EPA and DHA) in the process of enzymatic acidolysis of canola oil and concentrated of long-chain polyunsaturated fatty acids (LCPUFA) in supercritical CO2 conditions. Scientia Agropecuaria, 313–323. https://doi.org/10.17268/sci.agropecu.2015.04.08

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free