Large-scale integration of DNA methylation and gene expression array platforms identifies both cis and trans relationships

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although epigenome-wide association studies (EWAS) have been successful in identifying DNA methylation (DNAm) patterns associated with disease states, any further characterization of etiologic mechanisms underlying disease remains elusive. This knowledge gap does not originate from a lack of DNAm–trait associations, but rather stems from study design issues that affect the interpretability of EWAS results. Despite known limitations in predicting the function of a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in a concomitant change of transcription at the most proximal gene. This study integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG sites associated with trans GE were also enriched in areas of known regulatory significance, including enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and question the validity of assuming a cis DNAm–GE pathway. Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic support and further research should identify genomic regions in which GE-associated DNAm is overrepresented. An in-depth characterization of GE-associated CpG sites could improve predictions of the downstream functional impact of altered DNAm and inform best practices for interpreting DNAm–trait associations generated by EWAS.

References Powered by Scopus

This article is free to access.

This article is free to access.

Get full text

Cited by Powered by Scopus

This article is free to access.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Lancaster, E. E., Vladimirov, V. I., Riley, B. P., Landry, J. W., Roberson-Nay, R., & York, T. P. (2022). Large-scale integration of DNA methylation and gene expression array platforms identifies both cis and trans relationships. Epigenetics, 17(12), 1753–1773. https://doi.org/10.1080/15592294.2022.2079293

Readers over time

‘22‘23‘24‘2500.751.52.253

Readers' Seniority

Tooltip

Researcher 2

67%

PhD / Post grad / Masters / Doc 1

33%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 1

33%

Mathematics 1

33%

Biochemistry, Genetics and Molecular Bi... 1

33%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0